(2) Aristovich, V. Yu., Levin, A. 1., Morachevskii, A. G., Tr., Vses. NauchnoIssled. Inst. Neftekhim Protesessov, No. 5, 84 (1962)
(3) Barton, J. R., Hsu, C. C., J. Chem. Eng. Data, 14, 184 (1969).
(4) Bondi, A., "Physical Properties of Molecular Crystals, Liquids and Glasses", Wiley, New York, N. Y., 1968.
(5) Boublikova, L., Lu, B. C. Y., J. Appl. Chem., 19, 89 (1969).
(6) Chang, S. C., Lu, B. C. Y., Proc. Int. Symp. Distill., 1969, No. 32, 3.25 (1969).
(7) Ewell, R. H., Welch, L. M., Ind. Eng. Chem., 37, 1224 (1945).
(8) McDermott, C., Ellis, S. R. M., Chem. Eng. Sci., 20, 293 (1965)
(9) McDermott, C., Ph.D. Thesis, University of Birmingham, 1964.
(10) Marek, J., Collect. Czech. Chem. Commun., 20, 1490 (1935).
(11) Malesinski, W., "Azeotropy and Other Theoretical Problems of Vapor-Liquid Equilibrium', Interscience, London, N.Y., Sydney, 1965.
(12) Nothnagel, K. H., Abrams, D. S., Prausnitz, J. M., Ind. Eng. Chem., Process

Des. Dev., 12, 25 (1973).
(13) Prausnitz, J. M., "Molecular Thermodynamics of Fluid-Phase Equilibria", Prentice Hall, Englewood Cliffs, N.J., 1969, p 138.
14) Redlich, O., Kister, A. T., Ind. Eng. Chem., 40, 345 (1948),
(15) Sebastiani, E., Lacquantini, L., Chem. Eng. Sci., 22, 1155 (1967).
(16) Tamir, A., Wisniak, J., Chem. Eng. Sci., 31, 625 (1976)
(17) Tamir, A., Wisniak, J., Ind. Eng. Chem. Fundam., 31, 274 (1976).
(18) Tamir, A., Wisniak, J., Chem. Eng. Sci., 30, 335 (1975).
(19) Tetsuo, I., Fumitake, Y., J. Chem. Eng. Data, 8, 315 (1963).
(20) TRC Tables Selected Values of Properties of Chemical Compounds, Thermodynamic Research Center Data Project, College Station, Texas, 1961.
(21) Wisniak, J., Tamir, A., Chem. Eng. Sci., 31, 631 (1976).

Received for review January 12, 1976. Accepted March 16, 1977

A Crude Oil-Natural Gas System Vapor-Liquid Equilibrium Ratios (Data at $250{ }^{\circ} \mathrm{F}$ and System Containing $20 \% \mathrm{C}_{7+}$)

C. Floyd Wiesepape, H. T. Kennedy, ${ }^{\dagger}$ and Paul B. Crawford*
Texas Petroleum Research Committee, Texas A\&M University, College Station, Texas 77843

Vapor-liquid equilibrium ratios (K values) have been determined experimentally on a Devonian crude oil-nalural gas system containing $\mathbf{2 0} \%$ of the C_{7+} or heavy fraction. The data were obtained at $250^{\circ} \mathrm{F}$ and five pressures.

Some of the new and improved oil recovery methods require use of vapor-liquid equilibrium ratios to estimate the total oil recovery. Woertz provided a recent correlation, and his paper cites sources of vapor-liquid equilibrium ratio data (2). The need for additional experimental data is clearly evident. This paper presents the vapor-liquid equilibrium constants (K values) between a crude oil and natural gas system.

A Devonian crude oil of $40^{\circ} \mathrm{API}$ gravity from New Mexico free of hydrogen sulfide, nitrogen, or carbon dioxide and forming no precipitates when mixed with gas at high pressures was used as the base crude. Hexane-n-pentane, n-butane, propane, ethane gas, and a Texas natural gas were added to form the desired mixture. The mixture was prepared so that it contained $20.06 \% \mathrm{C}_{7+}$ in the total system. The C_{7+} fraction of each system was characterized by measurement of its specific gravity and molecular weight. Sufficient volume of the C_{7+} fraction was not available for ASTM distillation.
The basic apparatus consisted of a Ruska high pressure equilibrium cell in a constant temperature oil bath. Podbielniak low temperature fractional distillation apparatus with an external kettle was used for the analyses. A Hart pressure balance was used for pressure measurements. A high pressure storage cell was used to store the total mixture. See Figure 1. A Ruska mercury pump was used for fluid displacement. The benzene freezing point depression apparatus was equipped with a Beckmann thermometer.

The desired materials were charged into an evacuated rocking mixing cell using displacement with mercury into a fluid storage cell. This formed the total mixture. The mixed sample was displaced into the equilibrium cell located in the oil bath. The sample was expanded to a two-phase condition and rocked until constant pressure achieved. A constant pressure was maintained on the equilibrium sample during displacement of either a gas or liquid phase sample into the Podbielniak low temperature fractional distillation apparatus. An external kettle on the Podbielniak column was used to collect the heptanes-plus residue. The density was determined by weight and volume using a $2.0-\mathrm{mL}$

[^0]Table I. Total Composition of Mixture and Equilibrium Values at 1795 psia, Temperature $250^{\circ} \mathrm{F}$

| | Total
 composition
 mol fraction | Gas
 Component | Lquaid
 frac | K-Value
 Y_{i} / X_{i} |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Methane | 0.4747 | 0.7771 | 0.2885 | 2.6937 |
| Ethane | 0.0651 | 0.0737 | 0.0570 | 1.2938 |
| Propane | 0.0489 | 0.0446 | 0.0532 | 0.8386 |
| n-Butane | 0.0661 | 0.0385 | 0.0833 | 0.4623 |
| n-Pentane | 0.0687 | 0.0283 | 0.0919 | 0.3079 |
| Hexane | 0.0759 | 0.0211 | 0.1087 | 0.1940 |
| Heptanes-plus | $\underline{0.2006}$ | $\underline{0.0167}$ | $\underline{0.3174}$ | 0.0526 |
| | 1.0000 | 1.0000 | 1.0000 | |
| Heptanes-plus: | | | | |
| \quad Mol wt | 181.0 | 105.9 | 182.3 | |
| \quad Sp gr 60/60 | 0.8259 | 0.7314 | 0.8266 | |

pycnometer. The molecular weight of the C_{7+} was determined by the freezing point depression of benzene measured with a Beckmann thermometer.

The pressure is considered to within $\pm 0.08 \%$ using the Hart pressure balance. The average mole fraction deviation in composition analysis on duplicate samples was 0.0036 .

The total composition of the mixture is shown in Table I as well as equilibrium constants at 1795 psia. The equilibrium constant (K value) is the mole fraction of a component in the vapor divided by the mole fraction of the component in the liquid.

The bubble point of this mixture at $250^{\circ} \mathrm{F}$ was found to be 3190 psia. Tables II and III show the equilibrium constants at pressures of $2095,2295,2545$, and 2845 psia and a temperature of $250^{\circ} \mathrm{F}$.

Figure 2 shows a plot of the experimental K-value data as a function of pressure. The NGAA correlations for each component are shown as the solid lines (1). The NGAA K values for the C_{7+} shown plotted were assumed to be the average of heptane and octane K values. The NGAA method was used to calculate the convergence pressure. The critical temperature of the hep-tanes-plus fraction in the overall system was obtained from the plot of the critical temperatures of straight chain paraffin hydrocarbons against molecular weight.

A comparison of these experimental K values with the charts published by Woertz shows the experimental data for methane and ethane to be lower and the experimental data of the heavier components to be higher than the Woertz charts K values. The

Table II. Equilibrium Values at 2095 and 2295 psia, Temperature $250{ }^{\circ} \mathrm{F}$

Component	2095 psia			2295 psia		
	Gas fraction	Liquid fraction	$\begin{gathered} \hline \text { K-Value } \\ Y_{i} / X_{i} \end{gathered}$	Gas fraction	Liquid fraction	K-Value Y_{i} / X_{i}
Methane	0.7704	0.3287	2.3438	0.7717	0.3643	2.1184
Ethane	0.0706	0.0595	1.1851	0.0711	0.0595	1. 1944
Propane	0.0435	0.0525	0.8287	0.0433	0.0521	0.8313
n-Butane	0.0390	0.0807	0.4828	0.0395	0.0782	0.5050
n-Pentane	0.0325	0.0854	0.3809	0.0308	0.0848	0.3637
Hexane	0.0247	0.1054	0.2344	0.0220	0.0965	0.2277
Heptanes-plus	0.0193	0.2878	0.0672	$\underline{0.0216}$	0.2646	0.0815
	1.0000	1.0000		1.0000	1.0000	
Heptanes-plus:						
Mol wt	110.0	187.0		108.5	186.6	
Sp gr 60/60	0.7486	0.8295		0.7416	0.8287	

Table III. Equilibrium Values at 2545 and 2845 psia, Temperature $250^{\circ} \mathrm{F}$

Figure 2. Comparison of experimental and NGAA K values.

Association Engineering Data Book from the earlier edition of the book in the pressure and temperature range investigated.

Literature Cited

(1) "Engineering Data Book-Natural Gas Processors Suppliers Association",

Tulsa, Okla, 7th ed, 1957; 9th ed, 1972.
(2) Woertz, B. B., Trans. AlME, 251, 176-184 (1971).

Received for review April 26, 1976. Accepted March 11, 1977.

[^0]: ${ }^{\dagger}$ Deceased.

